REFERENCE LIBRARY

REFERENCE LIBRARY

[EZ-Cytox] Inhibition of NUPR1–Karyopherin β1 Binding Increases Anticancer Drug Sensitivity

2022.01.27 14:38 1,517 1

본문

Background: Nuclear protein-1 (NUPR1, also known as p8/Com-1) is a transcription factor involved in the regulation of cellular stress responses, including serum starvation and drug stimulation. Methods: We investigated the mechanism of NUPR1 nuclear translocation involving karyopherin β1 (KPNB1), using a single-molecule binding assay and confocal microscopy. The cellular effects associated with NUPR1–KPNB1 inhibition were investigated by gene expression profiling and cell cycle analysis. Results: The single-molecule binding assay revealed that KPNB1 bound to NUPR1 with a binding affinity of 0.75 nM and that this binding was blocked by the aminothiazole ATZ-502. Following doxorubicin-only treatment, NUPR1 was translocated to the nucleus in more than 90% and NUPR1 translocation was blocked by the ATZ-502 combination treatment in MDA-MB-231 with no change in NUPR1 expression, providing strong evidence that NUPR1 nuclear translocation was directly inhibited by the ATZ-502 treatment. Inhibition of KPNB1 and NUPR1 binding was associated with a synergistic anticancer effect (up to 19.6-fold) in various cancer cell lines. NUPR1-related genes were also downregulated following the doxorubicin–ATZ-502 combination treatment. Conclusion: Our current findings clearly demonstrate that NUPR1 translocation into the nucleus requires karyopherin β1 binding. Inhibition of the KPNB1 and NUPR1 interaction may constitute a new cancer therapeutic approach that can increase the drug efficacy while reducing the side effects.

댓글목록 1

김상진님의 댓글

JournalImpactFactor(2019) : 4.556