[EZ-Cytox] Triphenylphosphonium-conjugated glycol chitosan microspheres for mitochondria-targeted drug delivery
- - 짧은주소 : http://dogenbio.fineyes.com/bbs/?t=iN
- - 년도 : 2021
- - 제품명 : EZ-Cytox
- - 학술지명 : INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
- - 주소링크 : https://doi.org/10.1016/j.ijbiomac.2020.11.129
본문
To develop an efficient vector for mitochondria-targeted drug delivery, we synthesized triphenylphosphonium (TPP)-modified glycol chitosan polymeric microspheres that had a unique chemical structure with both lipophilic phenyl groups and cationic phosphonium. Notably, TPP can easily pass through the phospholipid bilayer of mitochondria, thereby resulting in specific accumulation of a combined drug molecule in the mitochondria due to the membrane potential between TPP and its membrane. Therefore, TPP has been widely used as a mitochondria-targeting moiety. Triphenylphosphonium-glycol chitosan derivatives (GC-TPP and GME-TPP) with two different degrees of substitution (11% and 36%) were prepared by amidation and Michael addition. The chemical structures of GC-TPP and GME-TPP were characterized by 1H nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their sizes were measured via field emission scanning electron microscopy and dynamic light scattering. Cellular uptake through flow cytometric analysis and confocal microscopy confirmed that both GC-TPP and GME-TPP were well introduced into cells, targeting the mitochondria. In addition, cytotoxicity testing of the most common cell lines, such as HEK293, HeLa, NIH3T3, and HepG2, indicated the absence of polymer toxicity. To evaluate the carrier effectiveness of TPP for drug delivery, doxorubicin (Dox) was used as an anticancer drug. Confocal microscopy images showed that Dox-loaded GME-TPP accumulated inside cells more than Dox-loaded GC-TPP. The anticancer effects of Dox were also determined by MTT assay, apoptosis/necrosis assay, and three-dimensional spheroids. In summary, the results indicate that GC-TPP and GME-TPP microspheres possess great potential as effective drug delivery carriers.
댓글목록 1
김상진님의 댓글
JournalImpactFactor(2019) : 5.162